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1. INTRODUCTION

There has been a great deal of recent interest in the surprisingly difficult
problem of Hermite-Birkhoff interpolation (HBI) by polynomials (for a
recent review see Sharma [14]). One of the interesting applications of the
known sufficient conditions for poisedness of HBI problems has been in the
demonstration of uniqueness of best approximation by monotone poly­
nomials (R. A. Lorentz [8]) and more generally by polynomials with restricted
derivatives (Roulier and Taylor [11]).

It was first pointed out in a paper by Karlin and Karon [4] that an HBI
result for splines is needed to settle similar monotone spline approximation
questions. Karlin and Karon began the study of HBI by splines and since
then this problem has been considered by Jetter [3] and Melkman [9]. The
main contribution of this paper is sufficient conditions guaranteeing poised­
ness for certain polynomial spline HBI problems which are general enough
to be applied to the monotone spline approximation problem.

The zero counting procedure for splines presented in Section 2 is essentially
the zero counting of Schumaker [13]. The specific form and notation for the
spline Hermite-Birkhoff interpolation considered is given in the next section.
Section 4 explains necessary conditions for poisedness and decomposition
results. The main theorem which generalizes the Atkinson-Sharma theorem
for polynomials [1] is presented in Section 5 and the application to monotone
spline approximation is briefly indicated in the last section.
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2. FUNDAMENTAL PROPERTIES OF POLYNOMIAL SPLINES

249

Suppose a = fo < fl < ... < fq < 'HI =b and integers Rv with
o < Rv ~ m for v = 1,... , q are given. Let .'/ = .'/m-l.:p({'v}~ ; {RvlD denote
the space of real polynomial splines of order m with fixed knots {fv}~ , each
with multiplicity Rv , respectively, where p = :2::=1 Rv • Thus g E.'/ is a
piecewise polynomial of degree at most m - 1 with g(j) continuous in a
neighborhood of 'v for j = 0, 1,... , m - Rv- 1; v = 1,... , q. We adopt the
convention that elements of .'/ are always right continuous. Further when
we differentiate an element of .'/ we will extend it to be defined everywhere by
right continuity.

Throughout this paper a summation over an empty set is zero. The fol­
lowing facts easily follow from the fundamental theorem of algebra for
splines [12J, [5J:

(1) dim .'/m-l.:P({fv}~ ; {RvlD = m + p.

(2) dim{ g [[«.<,>: g E.'/} = m + r.:::+1 Rv for all 0 ~ t < s ~ q + 1.

(3) dim{ g(i): g E.'/} = m - j + L:=1 min[Rv , m - j] for all j = 0,
1,..., m - 1.

(4) dim{ g(j) \[<('<,>: g E .'/} = m - j + p(j: t, s) for all j = 0, 1,...,
m - 1 and 0 ~ t < s ~ q + 1 where we define

'-1

p(j: t, s) = 2: min[Rv , m - jJ.
v-t+l

We say N is a zero sef for g E .'/ if either N is an interval (possibly
degenerate) on which g vanishes but no larger interval containing N has this
property or N is a point where g is discontinuous and changes sign. We define
the mulfiplicity zeN) of N as a zero set for g as follows:

(a) If N = {f}, f ¢ {'v}! , then g agrees with a polynomial in a neigh­
borhood of t and zeN) is the multiplicity of t as a zero of that polynomial in
the usual sense.

(b) If N = [a, g.J or [a, gs), s ): 1, let zeN) = m + L:::i Rv.

(c) If N = [gt, b], t ~ q, let zeN) = m + L:=(+1 Rv•

(d) If N = [g(, ,.] or [,(, '.), 0 < t < s < q + 1, there exists an
€ > 0 such that g(x) =1= 0 for any x E (gt - €, ,() U (gs, g. + €). We say g
changes sign at N if g('t - €/2) g('. + €/2) < 0 and does not change sign
otherwise. Let
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m+ f Rv + 1, if (m + 'f Rv) is even and g
v~t+1 v~t+1

changes sign at N,

does not change sing at N,

s-1

m + L Rv , otherwise.
v=t+1

(e) If N = {gv}, let (X = max(ft, y) where f3 and yare the multiplicities
of gv as a zero of the polynomials which agree with g in a left and right
neighborhood of gv, respectively. Let

1

(X+I,
zeN) = (X + 1,

(x,

if (X is even and g changes sign at gv ,
if (X is odd and g does not change sign at gv ,
otherwise.

Let {Ni}I denote all of the zero sets of g E [/, ordered in such a way that
sup N i < inf N i+!, i = 1,... , r - 1. Then the total zero count for g is
Z( g) = 2:;=1 z(Ni ). This zero counting procedure is a slight improvement
on the one given in [13]. The following lemmas can be easily established using
the arguments of Schumaker [13].

LEMMA 2.1. Suppose g E [/ is continuous in an open neighborhood con­
taining the interval [sup N1 , inf N 2] where N1 and N2 are consecutive zero sets
of g. Then g' has a zero set N' of odd multiplicity with

sup N1 < inf N' ,;;;; sup N' < inf N2 •

LEMMA 2.2. Assume g E [/ and maxv{Rv} < m - j for some j = 0,
1, ... , m - 2, thus making g(j) continuous. Then Z(g(il) ,;;;; Z(g(i+ll) + 1.

LEMMA 2.3. For any g E [/, Z(g) ,;;;; m + p with equality if and only if g
is the zero spline.

3. HERMITE-BIRKHOFF INTERPOLATION PROBLEMS

Suppose a fixed spline space [/ = [/m-u({gv}i ; {Rvm and interpolation
points X = {a ,;;;; Xl < X 2 < ... < Xk ~ b} are given. A matrix E =
{eii: i = 1,... , k;j = 0, 1".. , m - I} will be called a spline incidence matrix for
X and [/ provided eii = 0, ± 1, or 2, for every i, j, and eii = -lor 2 only
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if Xi = gv for some v = 1,..., q and j ;;::: m - Rv. The Hermite-Birkhoff
interpolation (HBI) problem defined by (E, X,.9') is: given any values
{Yo: eij = 1 or 2} and {yij: eij = -lor 2}, find g E .9' with

g(j)(Xi) = Yii whenever eiJ = 1 or 2,
g(j)(Xi-) = yij- whenever eij = -1 or 2.

Recall that we assume right continuity of all splines and their derivatives.
Thus a 1 indicates interpolation (or interpolation from the right if dis­
continuous), a -1 indicates interpolation from the left at a discontinuity,
and a 2 indicates separate interpolation for the left and right limits at a
discontinuity.

It is extremely helpful to indicate the relationship between the interpolation
points X and the knots of the spline space .9' when displaying a spline
incidence matrix. We do this by adding the following auxiliary lines.

(i) If Xi < gv < Xi+! with 0 < Rv :( m, we draw a solid line between
the i-th and (i + l)-th rows extending from the (m - Rv)-th column to the
(m - 1)-th column. If more than one knot lies between Xi and Xi+! , then
we draw several lines.

(ii) If Xi = gv with 0 < Rv:( m, we enclose in a box the entries in the
i-th row from the (m - Rv)-th column to the (m - l)-th column.

EXAMPLE 3.1.

rl 0 0

0 0 0 1

0 01-1 01

0 1 0

0
1
0 0 21

0 1 0 0

This di,,<;play indicates that .9' has four knots with Xl < gl < X2 < g2 <
Xs = gs < X 4 < Xs = g4 < X6 , RI = 3, R2 = 1, Rs = 2, and R4 = 3.
Note that an entry equal to -lor 2 can only occur in a box.

We define II Ell = Li,J I eiJ I and this indicates the number of inter­
polation conditions imposed by E. If an HBI problem (E, X, 9') has a unique
solution for any given data values, we say the problem is poised. Obviously
this can happen only if II Ell = dim .9' = m + p, and we say that E is full
(for 9') when this occurs. Equivalently (E, X, .9') is poised when the only
solution to the homogeneous problem is the zero spline. When II Ell :(
m + p, we say (E, X, .9') is quasi-poised if the dimension of the solution space
for the homogeneous problem is exactly m + p - II Ell.



252 DENNIS D. PENCE

4. NECESSARY CONDITION FOR POISEDNESS

We now investigate necessary conditions for poisedness and quasi­
poisedness which combine the features of the Polya conditions for HBI by
polynomials [1], [2], [6], [4], with the interlacing of knots and interpolation
points in Hermite interpolation by splines [12], [5]. These conditions,
although stated in a different form, agree with or include previous necessary
conditions for spline HBI [4], [3], [9].

Given g E .'7, let go , gl ,... , gq be the polynomials which agree with g on
the respective knot intervals. We define matrices E(7J: t, s) which are essen­
tially submatrices of E, in such a way that they denote exactly the conditions
imposed by (E, X, .'7) directly upon g~;),... , g~:!l for j = "I, "I + 1,..., m - 1.
Specifically, for some "I = 0, 1,... , m - 1 and 0 ~ t ~ s ~ q + 1, let
E(7J: t, s) = ret: i = k 1 , ... , k 2 ;j = "I,"" m - I} where k 1 = inf{i: ge ~ Xi},

k 2 = sup{i: Xi ~ gs}, and

1, if i = k1 , Xi = ge , and eij = 1 or 2,
eu, if Xi E (gt, gs),

et = eu, if i = k 2 , Xi = gs, andj < m - R..
1, if i = k2 , Xi = gs , and eij = -lor 2,
0, otherwise.

It is easy to see that for quasi-poisedness there cannot be more conditions
in E(7J: t, s) than dim{g<'IlJ be.E) : g E.'7} = m - "I + p(n: t, s). Thus we
obtain the following necessary conditions which we call the local Polya
conditions (LPC) for (E, X, .'7):

II E(7J: t, s)11 ~ m - "I + p(7J: t, s), 7J=0, ...,m-l;

o~t<s~q+1.

One of the advantages of our method for displaying incidence matrices is
that the (LPC) can be checked in the display. Example 3.1 satisfies these
necessary conditions.

When equality occurs in some of these (LPC), then the HBI problem can be
decomposed into smaller problems, as has been previously noted [4], [3], [9].
The complete details are tedious but not hard and can be found in [10].
We give only a brief summary here.

LEMMA 4.1. If II E(O: t, s)11 = m + p(O: t, s) for some 0 < t < s ~
q + 1 or 0 ~ t < s < q + 1, then (E, X, .'7) can be split vertically into two
or three HBI problems, each defined on a spline space oforder still m but with
fewer knots than .'7. The "central" one of these smaller problems has incidence
matrix E(O: t, s).
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LEMMA 4.2. If Xi = g. for some i, v and ei; = 1 for all j = 0, I, ... , m ­
R. - I, or ifR. = mfor some v, then (E, X, 9") can also be split vertically into
two HB! problems considering fewer knots. E(O: 0, v) and E(O: v, q + I) will
be the incidence matrices for these two smaller problems.

LEMMA 4.3. If II E(1'): 0, q + 1)11 = m - 1') + p(1'): 0, q + I) for some
1') = 1,2,... , m - I, then (E, X, 9") can be split horizontally into two HBI
problems each defined on spline spaces of smaller order. One of these has
incidence matrix E(1'): 0, q + I) and is definedfor a spline space oforder m - 1')

which has dimension m - 1') + p(1'): 0, q + I).

We further note that any of these decompositions preserve the (LPC) and
that if the original problem has a full matrix, then so do all of the smaller
problems. Quasi-poisedness of (E, X, 9") is equivalent to quasi-poisedness
of all of the split problems.

5. SUFFICIENT CONDITIONS FOR POISEDNESS

Jetter [3] and Melkman [9] each propose an analog for splines of the
theorem by Atkinson and Sharma [1] giving sufficient conditions for
a polynomial RBI problem. The main theorem of this section is stronger than
these in that given (E, X, 9"), it places less restrictions on the incidence
matrix when showing poisedness. On the other hand these conditions are
more complicated because they involve the knot locations and multiplicities.
It should be noted that Melkman includes more general boundary conditions
in his development.

Let (E, X, 9") indicate a given RBI problem. If Xi 1. {g.}1, then we say
that we have a regular sequence beginning with eij of order fL when eij =
eU+1 = ... = ei.;+",_l = 1 with ei,;-l = 0 and ei.H", = 0 if either is defined.
Also if Xi = g., then we say that we have a regular sequence beginning with
eij of order fL when eij = ei.HI = ." = ei.H"'-1 = 1 withj + fL ~ m - R. ,
ei.;-l = 0 and ei.H", = 0 if either is defined. Further a regular sequence
eij ,..., ei.H",-l is called strongly regular if eu+", is defined, zero, and, in the
case where Xi = g. , j + fL < m - R.. Thus in our display notation, a
regular sequence is a string of ones, none occurring in a box, and a strongly
regular sequence has the additional property that a zero entry, which also
does not appear in a box, follows the string of ones.

In a similar fashion we define a left or a right sequence to be a string of
successive entries indicating interpolation from the left or right, at least one
of which occurs in a box. A sequence is even if it has even order and odd
otherwise.
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We say that a regular sequence ei.i ,... , ei,i+I'-1 is supported provided there
exist integers i1 ,j1 , i2 , j2 with i1 < i < i2,

A < min[j, {m - Rv:Xii < Sv < Xi}]'

j2 < min[j, {m - Rv: Xi < sv < Xi.}],

and

ei•. i. = l, if Xi. = sv andj2 < m - Rv ,

-lor 2, if Xi. = Sv andj2 ;? m - Rv.

The problem (E, X, 9") is called weakly conservative (C) if every supported
strongly regular sequence is even.

Note that in our display notation, when searching to find entries eii.ii and
ei•.i. to show supportedness, no auxiliary line indicating a knot may be
crossed. Example 3.1 satisfies (C) because it has no supported strongly regular
sequences. In view of the decomposition possible using Lemma 4.3, the
difference between weakly conservative and what is usually called conservative
in the polynomial case is not significant.

THEOREM 5.1. Suppose (E, X, 9') satisfies (C), (LPC), andll Ell = m + p.
Then it is poised.

Proof We use induction on m, the order of the spline space. The theorem
is trivially true when m = 1. The induction hypothesis, then, is that the
theorem is true for any spline space of order strictly less than m, where now
m > 1. Let (E, X, 9") satisfy the hypotheses of the theorem where the order
of 9" is m.

Without loss of generality, we may assume that none of the hypotheses of
Lemmas 4.1, 4.2, or 4.3 hold. If anyone did, the problem could be split,
each smaller problem would satisfy (C), (LPC) and be full, so we could work
with each separately. In particular this means that elements of 9" are
continuous functions and that L~~1 ei,O > 1.

Suppose this problem is not poised. Then there exists a non-trivial g E 9"
satisfying the homogeneous problem. Let i1 < i2 < ... < iz , Z > 1 be the
indices where ei .O = 1 so that g(Xi) = ... = g(Xi) = O. Thus g is not
constant and g' must be non-trivial. Let {NwH denote the zero sets of g in
increasing order. By Lemma 2.1, g' has odd zeros {N~}~-l with

max N w < inf N~ :(: sup N;" < min NW+l'
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We construct an incidence matrix E' which describes the zero properties
ofgr. Initially we let E' = E(l: 0, q + I). Since Lemma 4.3 did not apply to E,
we have at this stage that 1\ E' II < m - 1 + p = dim 9"m-2.1>({g.}~ ; {R.}D.
E' thus defined satisfies (C) and (LPC). We shall attempt to add a condition
to E' "between" Xi and Xi ,ex = 1,... , Z - I, without violating (LPC).

or: or:+l

Briefly, if Zo ~ 2 of the Xi ,... , Xi lie in the same zero set N w = [gt, gs], then
1 •

the fact that Lemma 4.1 does not apply to E implies that (zo - I) ones can be
added to the first column of E' by adding new interpolation points from
(~t, ~s) without violating the (LPC) and (C).

If Xi and Xi belong to different zero sets of g, then between them lies
ex a+l

some N~ ,an odd zero set for g'. Either we can add a new interpolation point
and a one in the beginning column of E' to denote N~ , we can add a one to
the end of the supported strongly regular even sequence if it coincides with
N~ , or one of the following three things must happen.

(i) N~ = {g.}, g. rj {Xi}~ , and R. = m - I.

(ii) N~ = {~.}, g. = Xi, and eo = I for all j = I,... , m - R. - 1.

(iii) N~ = [~t, ~s] or [gt, ~s) with II E'(O: t, s)11 = m - I + L::~l R.,
where 0 < t < s < q + 1.

If we are able to add (z - I) ones as described above to construct a full E',
then E' and the appropriate interpolation points and spline space satisfy
the induction hypothesis. Thus the only solution to the homogeneous
problem is the zero spline, contradicting the non-triviality of g'. If not, then
some situation described by (i), (ii), or (iii) must occur. Each of these, how­
ever, implies that E' as constructed can be decomposed accofding to Lemma
4.1 or 4.2. Let (El , Xl , ~), ... , (E(3 , X(3 ,.98) denote the decomposed
problems where a restriction of g' is a non-trivial solution to each homo­
geneous problem (i.e. the "central" split problem defined on [~t, gs] when
(iii) occurs is left out). Each of these problems lacks at most two conditions
from being full and together they are short a total of f3 - I conditions.
Hence there is at least one (Ei , Xi , ~) which is full, and they all satisfy (C)
and (LPC). The induction hypothesis applies and yields a contradiction to
the homogeneous problem (Ei , Xi , ~). The theorem is thus established.

COROLLARY 5.2. Suppose (E, X, 9") satisfies (C) and (LPC). Then it is
quasi-poised.

6. ApPLICATIONS TO MONOTONE SPLINE ApPROXIMATION

The motivation for the particular sufficient conditions discussed in the
previous section was the following application to the problem of best uniform
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approximation by monotone splines. Let 0 ~ ko < k1 < ... < k w ~ m - 1
and €v = ±1, v = 0, 1,... , w be given. Then

G = {g E Ym-l,i{~v}~; {R.}~): €"g(kv)(t) ;;:: 0, for all t E [a, b], v = 0, 1,... , w}

is called a subset of monotone splines. This generalizes the well-known
notion of monotone polynomials (see [7], [8]).

AssumefE qa, b]\G with €of(t) ;;:: 0 if ko = O. The existence of at least
one best uniform approximation to ffrom G follows easily since G is a closed,
convex subset of a finite-dimensional subspace. The following theorem
concerning uniqueness can be shown using Theorem 5.1.

THEOREM 6.1. There exists some knot interval [gt, gs), t < s, where all
best uniform approximations to f from G are unique.

We will give only an outline of how the proof differs significantly from the
proof of uniqueness for monotone polynomials [8], [11], [6]. First g(kv'
may be discontinuous (although we assume right continuity). When we select
places where the constraints are active, we must include in our selection cases
where g(kvl(gv-) = 0, since by continuity elements of G must satisfy
€"g(kv)(~v-) ;;:: 0. Thus we need to have the capability to specify left and
right interpolation conditions when the k,,-th derivative may be discontinuous.

For polynomials, if g(kvl is not identically zero but g(k.)(t) = °for some
t E (a, b), then g(ko ) must have an even zero at t. This leads to the construction
of a polynomial HBI problem which has only order 2 supported sequences.
The derivative of a spline may be zero on an interval without being trivial.
Further g(kv'(gv) may be zero but g(kv+ll may be discontinuous at gv (although
it must change signs since g(kvl does not at g.). Thus for the monotone spline
problem we construct an HBI problem describing some of the zeros of g(kvl,
v = 0, 1, ... , w where g is a best uniform approximation to ffrom G and we
can add ones to all supported (in our spline since) strongly regular sequences.
The conclusion of partial uniqueness follows in a fashion similar to the way
unconstrained best uniform spline approximation yields uniqueness on some
knot interval.

Necessary (but not sufficient) extended alternation characterizations similar
to those of [6] and more general problems involving restricted derivatives
can be handled using Theorem 5.1 as well [10].
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